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Abstract Cooperative protein–ligand binding is an essential biochemical process. In
this work, we introduce a model that can simulate the emergence of such phenomenon
in the binding kinetics. It is based on the inability of the ligand molecules to fully
utilize all the available binding sites due to some restriction, realized here in terms
of a model parameter, called the restriction parameter. The theory is developed at the
level of a single oligomeric protein molecule interacting with a ligand, maintained
at a constant concentration, using a chemical master equation. The model provides
stepwise binding constants related to the restriction parameter. The relative magnitudes
of these constants, when compared to the Hill coefficients measuring cooperativity,
give a physical insight in the development of the cooperative behavior and can also act
as a reference frame. This can be useful for an alternative theoretical characterization of
cooperativity in oligomeric proteins with large number of binding sites and arbitrary
binding constants. We establish this point here by taking a tetrameric protein as a
case study. A stochastic thermodynamic analysis is also performed, highlighting the
energy–entropy contribution to the overall free energy change due to protein–ligand
interaction for various cases of restricted binding.

Keywords Oligomeric protein · Cooperativity · Master equation ·
Stochastic thermodynamics

1 Introduction

Oligomeric proteins are quite ubiquitous in nature [1–3], most famous being the
haemoglobin molecule involved in oxygen binding [4,5]. The multiple sites of these
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proteins for ligand binding can be independent or interacting. An example of the for-
mer case is the Escherichia coli β-galactosidase enzyme which is tetrameric with
non-interacting sub-units [6]. The latter case is more interesting as interaction among
the sub-units can give rise to cooperativity in protein–ligand binding which is a very
important biological process [7–11]. There are various examples of cooperative behav-
ior, again a prime contender being haemoglobin that shows sigmoidal oxygen binding
curve [7]. This is a signature of positive cooperativity where the binding of one lig-
and molecule with a subunit increases the affinity of further attachment of the ligand
to other subunits [8,11]. Similarly, in negative cooperativity, attachment of a ligand
molecule to one subunit reduces the tendency of further attachment of the ligand to
other subunits [12,13]. Generally, these types of cooperativity are classified under
allosteric cooperativity [9]. The phenomena are well-studied in literature with the
kinetics being theoretically analyzed in terms of two well established models: the
Monod–Wyman–Changeux (MWC) model [14] and the Koshland–Nemethy–Filmer
(KNF) model [15]. The KNF model is based on sequential binding of ligands to the
multimeric protein with site-dependent binding constants. On the other hand, MWC
model is formulated in terms of different conformations of the protein having different
affinities for the ligand [9]. These schemes for allosteric cooperativity are necessarily
applicable to multimeric proteins. Now, advent of modern experimental techniques,
particularly single molecule spectroscopy [16–18], allows one to probe various bind-
ing and catalytic processes with much greater detail. As a consequence, interest has
been rekindled in relevant theoretical studies. Stochastic kinetics at the mesoscopic
scale [19–22] received a lot of attention in this regard. This is due to the fact that, the
theory at the single molecule level must be constructed in terms of the probabilities
of possible system states, instead of concentrations of species, as in bulk reaction
[23,24]. For example, the ligand-binding kinetics of a single oligomeric protein is
described in terms of the probabilities of its ligand-bound states, with number of lig-
ands bound at any instant of time being a stochastic or random variable [25–27]. The
kinetics is formulated in terms of a master equation, aptly called chemical master
equation [28].

In this paper, we introduce a model of cooperativity, called the restricted binding
model, which is basically a generalization of the sequential binding mechanism. The
restriction imposed is: not all the sites are available for binding and this availability
varies during the successive binding steps. This gives rise to cooperativity in the lig-
and binding, which can be described using the standard Hill coefficient measure. The
utility of our model can be best understood by comparing it with the standard sequen-
tial binding model. In the latter case, cooperativity is generated when the successive
ligand-binding steps have different binding constants. For a dimeric protein, the nature
of cooperativity can be trivially found for this scheme. But, the situation gets gradually
more complicated with increasing number of binding sites. Then, one has no option
but to characterize the cooperativity for each case separately. With intractable number
of possible combinations of binding constants in principle, this is a futile task. Of
course, for gradually rising or falling binding constant values or when one of the bind-
ing constants is hugely different from the others, the cooperativity can be described.
However, for a coherent theoretical understanding of cooperativity based on such a
mechanism, one faces the basic question: what is the reference frame to judge the case
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of arbitrary stepwise binding constants in governing the nature and extent of coop-
erativity? We show here that, the restricted binding model provides such a reference
frame of site-dependent binding constants, taking a single tetrameric protein as an
example.

There has been extensive research in the field of thermodynamics of small systems,
focusing specially on situations far away from equilibrium [29–37]. Formulation of
thermodynamics at the single trajectory level in the past few years have allowed the
general thermodynamic concepts to be applicable for such systems [38–40]. Here
we implement this methodology to describe also the thermodynamics of stochastic
protein–ligand binding, complementing the kinetics.

In what follows, we construct the master equation for the restricted ligand binding
scheme in Sect. 2, along with the steady state solution. In Sect. 3, the state function
quantities, like internal energy, entropy and free energy of the system are introduced
based on the stochastic thermodynamic methodology and thoroughly analyzed for
various binding mechanisms. The nature of cooperativity in the restricted binding
kinetics and the corresponding thermodynamics are discussed in Sect. 4, concentrating
on the energy–entropy contribution to the free energy change. The paper is concluded
in Sect. 5.

2 Master equation for restricted binding and cooperativity

We take an oligomeric protein consisting of nT number of sub-units. Each sub-unit
can bind a single ligand molecule. We start with the condition of a fully vacant protein
at time, t = 0. For independent binding of the ligand in the normal case, all the nT

sub-units will be available for the first ligand molecule to bind. But for the restricted
binding model studied here, the number of available sub-units can also be less than nT .
This is for the first step of the binding. For the subsequent attachments, the restrictions
can be applied similarly. Generally, the master equation for this restricted binding
scheme is written as

∂ P(n, t)

∂t
= k1(nT − rn−1)P(n − 1, t) + (n + 1)k2 P(n + 1, t)

− k1(nT − rn)P(n, t) − nk2 P(n, t). (1)

The definitions of the quantities in Eq. (1) are as follows. First of all, P(n, t) is the
probability to find the protein molecule bound with n number of ligand molecules at
time t where n = 0, 1, . . . , nT . The rate constants for the attachment and detachment
of the ligand are denoted k1, k2, respectively. In our scheme, they are taken to be
the same for all the steps. Actually, k1 is the pseudo-first order rate constant defined
as k1 = k′

1[L] where k′
1 is the true second order rate constant for protein–ligand

association and [L] is the ligand concentration, assumed fixed for simplicity. We
introduce a restriction parameter, rn , an integer, for the attachment of a ligand molecule
with the state of the protein having n number of ligand molecules already bound. There
is no restriction in the detachment of the ligands from the protein–ligand complex in
any step. Then it is clear that, in principle, we can take
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rn = n, n + 1, . . . , nT − 1, for n = 0, 1, . . . , (nT − 2)

rnT −1 = nT − 1, rnT = nT . (2)

So with rn = n ∀ n, the binding process is totally unrestricted.

2.1 The steady state solution

At the steady state, the master equation (1) satisfies the detailed balance condition and
hence, the system reaches equilibrium. The equilibrium solution of Eq. (1) is given as

Pe(n)

⎧
⎪⎨

⎪⎩

=
∏n−1

i=0 (nT −ri )

n! Xn Pe(0), for n = 1, . . . , m + 1

= ∏m
i=0

(
nT −ri
nT −i

)
Cn

nT
Xn Pe(0), for n = m + 2, . . . , nT .

(3)

Here the index m gives the hierarchy of restriction in the ligand binding with 0 ≤
m ≤ (nT − 2). For example, m = 0 means that the restriction, if any, is only in the
first binding step. The maximum value m = nT − 2 represents the case where there is
restriction in the penultimate binding step. This may or may not include restrictions
in the previous steps. The parameter X = k1/k2 = k′

1[L]/k2 = Kb[L] with Kb

being the binding equilibrium constant. The equilibrium vacant state probability is
given as

Pe(0) = (1 + Z1 + Z2)
−1, (4)

with Z1 = ∑m+1
n=1

∏n−1
i=0 (nT −ri )

n! Xn and Z2 = ∏m
i=0

(
nT −ri
nT −i

) ∑nT
n=m+2 Cn

nT
Xn . For

unrestricted binding with rn = n ∀ n, the distribution becomes binomial as

Pe
bino(n) = Cn

nT

Xn

(1 + X)nT
. (5)

This is expected for independent binding of ligands without any restrictions.

2.2 Hill criteria of cooperativity

The cooperativity in ligand binding kinetics is traditionally quantified in terms of the

Hill coefficient, nH [41]. It is generally defined as the slope of the Hill plot, ln
(

θ
1−θ

)

versus ln[L] at the half-saturation point, θ = 0.5. Here, θ is the fractional saturation of
the protein given as θ = 〈n〉/nT .〈n〉 is the average saturation at equilibrium defined
as 〈n〉 = ∑nT

n=0 n Pe(n). As θ is experimentally measurable, the Hill coefficient is
extremely useful for the detection of cooperativity although it does not help in elu-
cidating the detailed mechanism generally. The Hill criteria of cooperativity is given
as
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nH

⎧
⎨

⎩

> 1, positive cooperativity
= 1, no cooperativity
< 1, negative cooperativity.

(6)

The slope of the Hill plot can be written as

sH = [L](dθ/d[L])
θ(1 − θ)

. (7)

It is shown in the literature that the r.h.s. of Eq. (7) can be written as the ratio of the
variances of the number of ligands bound for a given distribution and the corresponding
binomial distribution [5,41]. The expression is as follows

sH = 〈n2〉 − 〈n〉2

nT θ(1 − θ)
= σ 2

σ 2
bino

. (8)

In our case, the variance in the numerator of Eq. (8) can be determined using the
distribution in Eq. (3) whereas, the corresponding binomial is of the form given in Eq.
(5). Then, the Hill coefficient, nH is calculated by evaluating this ratio at θ = 0.5. It
is evident that, a binomial distribution of the binding number has a Hill coefficient of
unity and thus corresponds to a non-cooperative binding. Thus, a distribution like that
given in Eq. (3), can emerge from a cooperative binding kinetics.

3 Stochastic thermodynamics

Starting from the canonical distribution, the internal energy, u(n) of the state n can
be written in terms of the equilibrium probability, Pe(n) as u(n) = −T lnPe(n) + Fe

where Fe is the equilibrium free energy of the system [42]. Here, we consider the
whole reaction system to be in contact with an isothermal bath with temperature, T .
The bath is taken to be an ideal one with no entropy production of its own [42,43].
The Boltzmann constant is set at kB = 1 and we also set Fe = 0. The time-dependent
internal energy, U (t) of the system is given as [42]

U (t) = 〈u(n)〉 =
∑

n

u(n)P(n, t), (9)

where P(n, t) is the general time-dependent solution of the master equation. The
entropy, S and free energy, F of the system are defined as

S(t) = −
∑

n

P(n, t)lnP(n, t) (10)

and

F(t) = U (t) − T S(t) = T
∑

n

P(n, t)ln

(
P(n, t)

Pe(n)

)

. (11)

123



746 J Math Chem (2014) 52:741–753

In our system of protein–ligand binding, as we take the initial condition to be
P(n, t = 0) = δn,0, the initial values of the three thermodynamic state functions
introduced above are : U (t = 0) = −T lnPe(0), S(t = 0) = 0 and F(t = 0) =
U (t = 0). Then the internal energy change as the system reaches equilibrium is
expressed as

ΔU = U e − U (t = 0) = −T
nT∑

n=0

Pe(n)lnPe(n) + T lnPe(0)

= T
nT∑

n=1

Pe(n)ln

(
Pe(0)

Pe(n)

)

, (12)

where we have used the normalization
∑nT

n=0 Pe(n) = 1. Similarly, the entropy change
is

T ΔS = −T
nT∑

n=0

Pe(n)lnPe(n). (13)

Then, from Eqs. (12) and (13), we get the free energy change as

ΔF = T lnPe(0). (14)

The above result also follows directly from Eq. (11) with the free energy at equilibrium
being zero. Thus, starting from a fully vacant protein, the free energy change due to
ligand binding is governed here by the vacant state probability at equilibrium. We
analyze it further in the next paragraph.

Let us compare the vacant state probabilities of the binomial distribution, Eq. (5)
and the distribution corresponding to the restricted binding, Eq. (4). Their difference
is given as

1

Pe
bino(0)

− 1

Pe(0)
= (1 + X)nT − (1 + Z1 + Z2)

=
(

m+1∑

n=1

Cn
nT

Xn −
m+1∑

n=1

∏n−1
i=0 (nT − ri )

n! Xn

)

+
( nT∑

n=m+2

Cn
nT

Xn

(

1 −
m∏

i=0

(
nT − ri

nT − i

)))

=
m+1∑

n=1

Xn

n! [(nT (nT − 1) . . . (nT − n − 1))

−((nT − r0)(nT − r1) . . . (nT − rn−1))
]

+
( nT∑

n=m+2

Cn
nT

Xn

(

1 −
m∏

i=0

(
nT − ri

nT − i

)))

. (15)
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It is evident from Eq. (15) that for ri = i, ∀i , the r.h.s. becomes zero. This is expected
as for unrestricted binding, the distribution reduces to a binomial. Now, restricted
binding occurs for ri > i, ∀i and then, from Eq. (15) we get

1

Pe
bino(0)

− 1

Pe(0)
> 0. (16)

From Eqs. (14) and (16), we see that, free energy change in the case of unrestricted
binding is always more negative than the corresponding restricted binding cases.

4 Kinetics and thermodynamics of restricted binding

We model the case of a tetrameric protein to apply the theoretical methodology intro-
duced in the previous sections. With nT = 4, the restriction in ligand binding can
go up to m = nT − 2 = 2, i.e., ri = i, i + 1, . . . , (nT − 1) for i = 0, 1, 2 and
r3 = 3, r4 = 4. First of all, we numerically determine the fractional saturation, θ as a
function of X/Kb, the effective ligand concentration. The plot of θ is shown in Fig. 1
for the unrestricted binding along with some restricted binding cases. The unrestricted
binding is most efficient as is evident from the figure.

We construct the Hill plot, ln
(

θ
1−θ

)
versus ln[L] and numerically determine the

Hill coefficient, nH for all possible scenarios of restricted binding for nT = 4. The
results are summarized in Table 1. It is evident from the given Hill coefficient data
that restriction in ligand binding in different steps can give rise to both positive and
negative cooperativity in binding. There are also cases where the system is almost
non-cooperative. An important aspect is that here one can invoke site-dependent rate
constants, k( j)

1 ( j = 0, 1, . . . , (nT − 1)) for ligand attachment. They are defined in
terms of the restriction parameter, r j as

100
X/Kb

0

0.5

1

θ

r0=0, r1=1, r2=2
r0=0, r1=1, r2=3
r0=0, r1=3, r2=3
r0=3, r1=3, r2=3

Fig. 1 The fractional saturation, θ is plotted as a function of X/Kb , the effective ligand concentration, for
the unrestricted binding (r0 = 0, r1 = 1, r2 = 2) as well as for some restricted binding cases
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Table 1 All possible schemes
for the restricted ligand binding
to a protein with nT = 4

The Hill coefficient, nH and the
ratio of the effective stepwise

binding rate constants, k( j)
1 are

determined for each case

r0 r1 r2 nH k(0)
1 :k(1)

1 :k(2)
1 :k(3)

1

0 1 2 1.0 1:1:1:1

0 2 2 1.075 1:2/3:1:1

0 3 2 1.201 1:1/3:1:1

0 1 3 0.871 1:1:1/2:1

0 2 3 0.957 1:2/3:1/2:1

0 3 3 1.11 1:1/3:1/2:1

1 1 2 1.058 3/4:1:1:1

1 2 2 1.133 3/4:2/3:1:1

1 3 2 1.258 3/4:1/3:1:1

1 1 3 0.919 3/4:1:1/2:1

1 2 3 1.007 3/4:2/3:1/2:1

1 3 3 1.157 3/4:1/3:1/2:1

2 1 2 1.154 1/2:1:1:1

2 2 2 1.228 1/2:2/3:1:1

2 3 2 1.354 1/2:1/3:1:1

2 1 3 1.0002 1/2:1:1/2:1

2 2 3 1.089 1/2:2/3:1/2:1

2 3 3 1.241 1/2:1/3:1/2:1

3 1 2 1.348 1/4:1:1:1

3 2 2 1.425 1/4:2/3:1:1

3 3 2 1.553 1/4:1/3:1:1

3 1 3 1.174 1/4:1:1/2:1

3 2 3 1.269 1/4:2/3:1/2:1

3 3 3 1.422 1/4:1/3:1/2:1

k( j)
1 = k1

(
nT − r j

nT − j

)

. (17)

These stepwise rate constants give the equivalent scenario of the restricted binding
model described in Eq. (1). More importantly, they provide the link between the
restricted binding model and the standard sequential binding mechanism and give a
detailed physical insight in the development of cooperativity with stepwise differ-
ent binding affinities. As already mentioned in the Introduction, it is not possible to
generally determine the nature of cooperativity for arbitrary site-dependent binding
constants. Hill coefficient presents a global measure without details and that also has
to be implemented case-by-case. In this regard, the restricted binding scheme allows
one to get some representative values of the stepwise binding constants, that reduces
the arbitrariness and can throw new light on our understanding of the underlying
mechanism. The ratios of the stepwise binding rate constants, k( j)

1 , given in Table 1,
can serve that purpose, in conjunction with the Hill coefficient. These ratios offer a
useful reference frames in judging the nature of cooperativity for an arbitrary ligand
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binding case, with the following constraint. In the effective stepwise binding constants,
k( j)

1 , coming out of the restricted binding model, the rate constant of the final binding
step (binding of the fourth ligand molecule for nT = 4) is never less than the rate
constants of the previous binding steps. However, generally it can be said that, the
nature of cooperativity depends on in which step the restriction is imposed, in other
words, the relative magnitudes of the stepwise binding constants. This is discussed
next.

Analyses of the data in Table 1 show that significant negative cooperativity can
arise if the restriction comes into play at its final stage. In our case of a tetrameric
protein, the lowest nH (= 0.871) occurs for r0 = 0, r1 = 1, r2 = 3, i.e., when
restriction first appears only after binding of two ligand molecules. Following similar
trend, appreciable positive cooperativity appears when the restrictions are imposed
early. In our case, the maximum nH (= 1.553) is for r0 = 3, r1 = 3, r2 = 2, i.e.,
full possible restriction in the attachment of first and second ligand molecules and
then no further restriction in the following steps. Also different restriction numbers,
rn , leading to different ratios of the stepwise binding constants, can conspire in such
a way that the overall Hill coefficients become similar. This shows the inability of the
Hill coefficient to unveil the mechanistic details of the reaction.

From the volume of data in Table 1, we now analyze some specific cases to see how
the overall cooperativity develops. Let us take the bunch of schemes with r0 = 0,

r1 ≥ 1, r2 = 2. First we discuss the variation of the restriction number r1.

For r1 = 2, there is partial restriction in the attachment of the second lig-
and molecule to the oligomeric protein. This gives a ratio of the stepwise rate
constants as k(0)

1 :k(1)
1 :k(2)

1 :k(3)
1 ::1:2/3:1:1. Thus, although the fall of the binding

constant in the second step and its rise in the third step are by the same fac-
tor (= 3/2), the rise matters more as the system is positively cooperative with
nH = 1.075. As the restriction becomes full with r1 = 3, the fall and rise
of the binding constant in the second and third step, respectively, occurs by the
same factor (= 3, different from the previous case obviously). Again, the rise
matters more and the system becomes more positively cooperative with nH =
1.201. Thus, here the third step of ligand binding is the cooperativity determining
step.

Next we come to the schemes with r0 = 0, r1 ≥ 1, r2 = 3. The restriction is full in
the third binding step (r2 = 3) and the restriction in the second step is gradually turned
on. For r1 = 1, the fall and rise of the binding constant in the third and fourth step,
respectively, occurs by the same factor (=2). But now the fall matters more with the
overall binding showing negative cooperativity having nH = 0.871. For r1 = 2, 3 the
situation becomes more complex with the fall and rise of the k( j)

1 s occurring by different
factors. In case of r1 = 2, the binding constant in the second step falls by a factor of 3/2
and for r1 = 3, it falls by a factor of 3. But the former case has negative cooperativity
(nH = 0.957) whereas, the latter one has positive cooperativity (nH = 1.11). This
shows that again the overall cooperativity is governed here by the third step of ligand
attachment. For r1 = 2 (with r0 = 0, r2 = 3), k(2)

1 decreases compared to k(1)
1 by a

factor of 3/4 that leads to negative cooperativity. On the other hand, for r1 = 3 (with
r0 = 0, r2 = 3), it increases by a factor of 3/2 generating positive cooperativity.
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Fig. 2 The equilibrium probabilities, Pe(n) are plotted as a function of X/Kb (with concentration units)
for the unrestricted binding (non-cooperative) case, i.e., r0 = 0, r1 = 1, r2 = 2

This trend gets changed when the restriction is turned on in the first step of binding
itself with r0 > 0. This happens particularly in the case of negative cooperativity
whose occurrence becomes rarer as r0 increases, turning the negative cases to positive
ones. This transition can be characterized with the symmetric case where the ratio
is k(0)

1 :k(1)
1 :k(2)

1 :k(3)
1 ::1/2:1:1/2:1 for the scheme with r0 = 2, r1 = 1, r2 = 3. Here

the binding rate constants in successive steps rise and fall by the same factor (= 2)

that ultimately gives a system which is almost non-cooperative having nH = 1.0002.
When the restriction in r0 is full with r0 = 3, there is only positive cooperativity (see
Table 1).

We now plot the equilibrium probabilities, Pe(n) for the unrestricted binding (non-
cooperative) case in Fig. 2 as a function of X/Kb. At low X/Kb, corresponding to low
ligand concentration, the vacant state probability, Pe(0) of the protein dominates. As
X/Kb increases, Pe(0) falls rapidly and the fully occupied state probability, Pe(4)

rises monotonically. Other state probabilities pass through maxima at intermediate
ligand concentrations. This feature is present for the various restricted binding cases
also (not shown in figures). The nature of variation of the equilibrium probabilities
of different ligand-bound states of the protein with ligand concentration governs the
thermodynamics of the stochastic binding as we will show next.

The temperature-scaled internal energy change, ΔU/T and entropy change, ΔS are
shown as a function of X/Kb for the unrestricted and a few restricted binding schemes
in Fig. 3. From Fig. 3a, one can see that the variation of internal energy change has
two distinct regions. At small values of X/Kb (� 1),ΔU/T is positive for all the
binding schemes. This can be explained using Eq. (12). At low X/Kb, only the vacant
state probability, Pe(0) is significant, Pe(0) 	 Pe(n), n 
= 0 (see Fig. 2). Then all
the terms in Eq. (12) are positive and hence ΔU/T > 0. As the value of X/Kb rises,
Pe(0) becomes rapidly smaller than the other bound state probabilities. Thus ΔU/T
becomes negative and falls continuously in the range of concentration studied. The
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Fig. 3 Variation of a temperature-scaled internal energy change, ΔU/T , b entropy change, ΔS and
c temperature-scaled free energy change, ΔF/T due to protein–ligand binding as a function of X/Kb
for the unrestricted and a few restricted binding schemes. In c the entropy driven binding is indicated for
X/Kb � 1

variation of ΔS with X/Kb shows non-monotonic behavior as shown in Fig. 3b. In all
the cases it passes through a maximum. This can again be interpreted in terms of the
variation of Pe(n). At the limit of X/Kb � 1, Pe(0) is dominant, whereas at the other
limit of X/Kb 	 1, only Pe(4) survives. According to Eq. (13), ΔS → 0 in both
the limits. So at some intermediate X/Kb value, when some of the state probabilities
will come close together having finite values (see Fig. 2), the entropy change will
maximize. In this context, it is useful to point out that the uniform distribution has the
maximum entropy as evident from Eq. (13).

Next, we come to the temperature-scaled free energy change, ΔF/T plotted in
Fig. 3c. It is negative throughout and also decreases monotonically with ligand con-
centration. The free energy curve for the unrestricted binding always remains lower
than those for restricted binding, supporting the analytical result derived in Eq. (16).
Hence, although the restricted binding cases in our model are positively or nega-
tively cooperative in general, their binding efficiency is lower than the unrestricted
non-cooperative binding scheme. Thus, binding efficiency has no direct connec-
tion to the degree of cooperativity. We want to mention further couple of impor-
tant points. (i) From the variations of internal energy, entropy and free energy, it
becomes clear that the ligand binding process is internal energy driven over most
of the range of ligand concentration. This is true for the non-cooperative as well
as the cooperative schemes arising out of restricted binding. (ii) In connection with
the first point, at very low ligand concentration, the internal energy change is posi-
tive for all the cases. So in this limit, the energy contribution is unfavorable to the
overall free energy change. However, the binding process can still go on by the
(positive) entropy contribution that makes the overall free energy change negative.
Therefore, in the limit of low ligand concentration, the binding process is entropy
driven.
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5 Conclusion

In this work, we have introduced a model of cooperative ligand binding to a single
oligomeric protein molecule, based on a restriction over available sites during the
binding process. The stochastic kinetics is described in terms of a chemical mas-
ter equation. The hierarchy of restrictions in the binding schemes can be physically
realized in terms of the site-dependent binding rate constants, determined from the
restriction parameter of the model. This parameter governs in which step and to what
extent the restrictions are imposed on ligand attachment, generating both positive and
negative cooperativity. The relative magnitudes of the stepwise binding rate constants
for all possible scenarios of restricted association are analyzed by taking the case of
a tetrameric protein. The ratios of the binding constants, along with the Hill coeffi-
cients, furnish a detailed understanding of the underlying machinery of cooperative
binding. This is important, as the Hill coefficient alone tells nothing about the local
interactions that give the resultant behavior. Thorough analyses of our data in various
cases show that, when the restriction is imposed only in the second and/or third step
of binding, negative cooperativity arises in several cases. With no restriction in the
first binding step, the third step of ligand binding is identified as the crucial step that
governs the nature of cooperativity showing the utility of the method in determining
the mechanistic details, although limited by constraints of the model. With increas-
ing restrictions in the first binding step, positive cooperativity becomes the dominant
feature, with the first and second steps becoming important. This shift in the impor-
tance of the ligand binding steps in controlling the overall cooperative behavior is
nicely characterized by a case of symmetric stepwise binding constants, where they
cancel out the effects of each other, giving the system an overall non-cooperative
nature. Therefore, the restricted binding model shows the inadequacy of Hill coef-
ficient in revealing the mechanistic details of protein–ligand binding and simultane-
ously, gives physical insight in the emergence of cooperativity from a microscopic
viewpoint.

We have also determined the free energy change and its internal energy and entropy
contributions, due to the protein–ligand binding based on the theory of stochastic
thermodynamics. We have analytically shown that the free energy change due to
the unrestricted non-cooperative binding mechanism is always more negative than
the corresponding restricted binding mechanisms. Free energy change data for the
tetrameric protein as a function of ligand concentration show that the binding is entropy
driven at very low ligand concentration and gradually becomes energy driven with
rise in ligand concentrations. This is true for the unrestricted non-cooperative binding
scheme as well as for the restricted binding mechanisms, showing the absence of
a general connection between binding efficiency and cooperativity. The model can
be generalized further by imposing restrictions also on ligand detachment steps and
taking any real number as the restriction parameter.
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